Obtain \& sketch site information

Sketch a plan of your house and yard indicating areas of lawn, ground cover, flowerbeds, patios, and decks. (Use graph paper on back.) Note the location of hedges, shrubs, large trees, and any other plant material, fences, or structures that may block the spray of sprinklers. Include dimensions showing the length and width of areas to be watered. Also indicate the location and width of concrete, brick, or stone walkways. You may have to cross the walkway with piping, so take a good look at the thickness of the walkway, and what type of soil or subsurface is under the walkway. Is the soil sandy, rocky, orclay? Soil type and how quickly water percolates through it are especially important in drip irrigation systems.

Take a good look at the area to be watered as a whole. Notice ifthe areaslopes, how steeply it slopes and in which direction. This information can be shown on a drawing with arrows indicating direction of slopes. It is helpful to do this drawing on graph paper, making each square equal 1,4, or 5 feet, depending on the scale of yourdrawing. Keep the drawing simple. Be careful totake accurate measurements and keep the components of the drawing reasonably to scale.

Find the water source

For mostsystems, the source of water is a hose faucet. The greater the volume (flow) of water from the faucet, the easier and often cheaper the system will be. It is worth testing all hose faucets around your house that could be used as a source of water. Don't assume that flow rates will be equal (or even close) from all faucets. Often there is a large difference between front yard and back yard faucets. The size and material (usually galvanized or copper) of the pipe behind the faucet and the height of the faucet from the ground affect flow rates. See the sizing chart below for help in determining pipe diameter.

Test your flow rate-important!

Totestyourflowrate,fully openthefaucet, place alargebucketofknownvolumeunder the faucet, andtimehow longittakestofill. For example it maytake30secondstofilla5-gallon bucket. Theflow rate of the faucet would be 10 gallons per minute (gpm) with 70 to 75% "usable" 7 to 7.5 gpm).

Manydifferentypes ofautomaticirrigation valvesare available. A typical brass combination valve with a "valve adapter" is shown in the illustration. This provides both the backflow prevention required by the state plumbingcodeandasimple, compact assembly.

Do you want a timer?

Ifyou are considering automating your system either now or in the future, you will wantto pick out some possible locations for the controller. The garage, basement, laundry room, and utility room are all good choices. Well-lit, easily accessible spots make installation and reprogramming easy. The simplest controller can run at least two valves. Eighteen-gauge electrical wire runs between the controller and the solenoids of the valves. This wire is a coated underground wire and is approved fordirect burial.

Indoor controllers must be installed inside and usually within 6 ' of an electrical outlet. Outdoor controllers are constructed to withstand precipitation and fluctuation in temperature and humidity. They can be installed anywhere outdoors (or indoors), but must be hard wired, anddo not plug in.

Pipe Sizing Chart

Measure the circumference of the pipe with a tape measure, or with a piece of string, and look up the corresponding diameter on this chart.

(Inches) Circumference	Copper	Galvanized or PVC
$21 / 4$	$1 / 2^{\prime \prime}$	
$31 / 8$	$3 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$
$33 / 4$	$1 "$	$3 / 4^{\prime \prime}$
$43 / 4$		$1 "$

Important to note in your drawing:

> We will be happy to help you with any questions about planning and install-ing yourirrigation system. A plan and the following information will give us what we need to design an efficient system tailored to your garden.

Pipe Material

Pipe Diameter
Flow @location 1
Volume of bucket
Time to fill in seconds
Flow @location 2
Volume of bucket
Time to fill in seconds
It will often be necessary to take aflow reading at more than one location. Please note location of each source clearlyon yourdrawing.

MILL VALLEY
653 East Blithedale Mill Valley, CA 94941 415.380 .3840

RICHMOND ANNEX
2121 San Joaquin St. Richmond, CA 94804 510.524.1604

